Dynamic list coloring of bipartite graphs

نویسنده

  • Louis Esperet
چکیده

A dynamic coloring of a graph is a proper coloring of its vertices such that every vertex of degree more than one has at least two neighbors with distinct colors. The least number of colors in a dynamic coloring of G, denoted by χ2(G), is called the dynamic chromatic number of G. The least integer k, such that if every vertex of G is assigned a list of k colors, then G has a proper (resp. dynamic) coloring in which every vertex receives a color from its own list, is called the choice number of G, denoted ch(G) (resp. the dynamic choice number, denoted ch2(G)). It was recently conjectured [S. Akbari et al., On the list dynamic coloring of graphs, Discrete Appl. Math. (2009)] that for any graph G, ch2(G) = max(ch(G), χ2(G)). In this short note we disprove this conjecture. We first give the example of a small planar bipartite graph G with ch(G) = χ2(G) = 3 and ch2(G) = 4. Then, for any integer k ≥ 5, we construct a bipartite graph Gk such that ch(Gk) = χ2(Gk) = 3 and ch2(G) ≥ k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite Graphs whose Squares are not Chromatic-Choosable

The square G2 of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. A graph H is called chromatic-choosable if χl(H) = χ(H). It is an interesting problem to find graphs that are chromatic-choosable. Motivated by th...

متن کامل

M ay 2 01 4 Bipartite graphs whose squares are not chromatic - choosable

The square G2 of a graph G is the graph defined on V (G) such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let χ(H) and χl(H) be the chromatic number and the list chromatic number of H, respectively. A graph H is called chromatic-choosable if χl(H) = χ(H). It is an interesting problem to find graphs that are chromatic-choosable. Motivated by th...

متن کامل

Hard coloring problems in low degree planar bipartite graphs

In this paper we prove that the PRECOLORING EXTENSION problem on graphs of maximum degree 3 is polynomially solvable, but even its restricted version with 3 colors is NP-complete on planar bipartite graphs of maximum degree 4. The restricted version of LIST COLORING, in which the union of all lists consists of 3 colors, is shown to be NP-complete on planar 3-regular bipartite graphs. © 2006 Els...

متن کامل

The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs

We study the problem of transforming one list (vertex) coloring of a graph into another list coloring by changing only one vertex color assignment at a time, while at all times maintaining a list coloring, given a list of allowed colors for each vertex. This problem is known to be PSPACE-complete for bipartite planar graphs. In this paper, we first show that the problem remains PSPACE-complete ...

متن کامل

NP-completeness of list coloring and precoloring extension on the edges of planar graphs

In the edge precoloring extension problem we are given a graph with some of the edges having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-edge-coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 158  شماره 

صفحات  -

تاریخ انتشار 2010